Las_bacterias

Las_bacterias

 

 

 

1. Introducción.

2. definición de bacterias.

3. Estructura y fisiología.

    3.1 Estructura de superficie y cubierta.

    3.2 Estructuras internas

4. La división celular bacteriana.

    4.1 Espora bacteriana.

5. Nutrición y crecimiento bacterianos.

6. Genética bacteriana.

    6.1 Las mutaciones.

    6.2 Transferencias genéticas.

    6.3 Variaciones extracromosómicas.

 

 

 

 

 

Introducción

 

 

Las bacterias juegan un papel fundamental en la naturaleza y en el hombre: la presencia de una flora bacteriana normal es indispensable, aunque gérmenes son patógenos. Análogamente tienen un papel importante en la industria y permiten desarrollar importantes progresos en la investigación, concretamente en fisiología celular y en genética. El examen microscópico de las bacterias no permite identificarlas, ya que existen pocos tipos morfológicos, cocos (esféricos), bacilos (bastón), espirilos (espiras) y es necesario por lo tanto recurrir a técnicas que se detallarán más adelante. El estudio mediante la microscopia óptica y electrónica de las bacterias revela la estructura de éstas.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flecha izquierda: Pág_inicial
 

 

 


Definición_de_las_bacterias

 

Son seres generalmente unicelulares que pertenecen al grupo de los protistos inferiores. Son células de tamaño variable cuyo límite inferior está en las 0,2m y el superior en las 50m ; sus dimensiones medias oscilan entre 0,5 y 1m . Las bacterias tienen una estructura menos compleja que la de las células de los organismos superiores: son células procariotas (su núcleo está formado por un único cromosoma y carecen de membrana nuclear). Igualmente son muy diferentes a los virus, que no pueden desarrollarse más dentro de las células y que sólo contienen un ácido nucleico.

 

 

 

 

 

 

Los bacilos de Clostridium botulinum, causante de intoxicaciones alimenticias graves, secretan una toxina mortal

 

 

 

 

 

Flecha izquierda: Pág_inicial
 


Estructura_y_fisiología

 

Las estructuras bacterianas las podemos clasificar, por razones didácticas, en estructuras constantes o accesorias. Las estructuras constantes son las estructuras esenciales para la vida de la bacteria e incluyen el citoplasma con el cromosoide bacteriano, la membrana y la pared celular. Por otra parte, las estructuras accesorias: cápsula, flagelos y fimbrias, están presentes sólo en algunas de ellas y aunque no son indispensables para la vida, otorgan extraordinarias ventajas adaptativas a las bacterias que las poseen.

 

 

 

 

 

 

 

 

 

 

 

 

 

Flecha izquierda: Pág_inicial
 


Estructura_de_superficie_y_cubierta

 

·       La cápsula no es constante. Es una capa gelatinomucosa de tamaño y composición variables que juega un papel importante en las bacterias patógenas.

 

·       Los cilios, o flagelos, no existen más que en ciertas especies. Filamentosos y de longitud variable, constituyen los órganos de locomoción. Según las especies, pueden estar implantados en uno o en los dos polos de la bacteria o en todo su entorno. Constituyen el soporte de los antígenos "H". En algunos bacilos gramnegativos se encuentran pili, que son apéndices más pequeños que los cilios y que tienen un papel fundamental en genética bacteriana.

 

 

·       La pared que poseen la mayoría de las bacterias explica la constancia de su forma. En efecto, es rígida, dúctil y elástica. Su originalidad reside en la naturaleza química del compuesto macromolecular (PEPTIDOGLICANO)que le confiere su rigidez. Este compuesto, un mucopéptido, está formado por cadenas de acetilglucosamina y de ácido murámico sobre las que se fijan tetrapéptidos de composición variable. Las cadenas están unidas por puentes peptídicos. Además, existen constituyentes propios de las diferentes especies de la superficie.

 

La diferencia de composición bioquímica de las paredes de dos grupos de bacterias es responsable de su diferente comportamiento frente a un colorante formado por violeta de genciana y una solución yodurada (coloración Gram). Se distinguen las bacterias grampositivas (que tienen el Gram después de lavarlas con alcohol) y las gramnegativas (que pierden su coloración).

 

Flecha izquierda: Pág_inicial
 


 

Se conocen actualmente los mecanismos de la síntesis de la pared. Ciertos antibióticos pueden bloquearla. La destrucción de la pared provoca una fragilidad en la bacteria que toma una forma esférica (protoplasto) y estalla en medio hipertónico (solución salina con una concentración de 7 g. de NaCI por litro).

 

·       La membrana citoplasmática, situada debajo de la pared, tiene permeabilidad selectiva frente a las sustancias que entran y salen de la bacteria. Es soporte de numerosas enzimas, en particular las respiratorias. Por último, tiene un papel fundamental en la división del núcleo bacteriano. Los mesosomas, repliegues de la membrana, tienen una gran importancia en esta etapa de la vida bacteriana.

 

PLASMIDOS: pequeñas moléculas circulares de ADN que coexisten con el nucleoide, contienen genes y son comúnmente usados por las bacterias en la "reproducción sexual

 

El espacio comprendido entre la membrana celular y la pared celular se denomina periplasma.

 

 

 

 

Flecha izquierda: Pág_inicial
 


Estructuras _ internas

 

 

·       El núcleo lleva el material genético de la bacteria; está formado por un único filamento de ácido desoxirribonucleico (ADN) apelotonado y que mide cerca de 1 mm de longitud (1000 veces el tamaño de la bacteria).

 

·       Los ribosomas son elementos granulosos que se hallan contenidos en el citoplasma bacteriano; esencialmente compuestos por ácido ribonucleico, desempeñan un papel principal en la síntesis proteica.

 

 

·       El citoplasma, por último, contiene inclusiones de reserva.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flecha izquierda: Pág_inicial
 

 


La_división_celular_bacteriana

 

La síntesis de la pared, el crecimiento bacteriano y la duplicación del ADN regulan la división celular. La bacteria da lugar a dos células hijas. La división empieza en el centro de la bacteria por una invaginación de la membrana citoplasmática que da origen a la formación de un septo o tabique transversal. La separación de las dos células va acompañada de la segregación en cada una de ellas de uno de los dos genomas que proviene de la duplicación del ADN materno.

 

 

 

 

En la figura se observan colonias mucosas de Pseudomonas cepacia

 

 

 

 

 

 

 

 

 

 

Flecha izquierda: Pág_inicial
 


Espora _ bacteriana

 

 

Ciertas bacterias grampositivas pueden sintetizar un órgano de resistencia que les permite sobrevivir en condiciones más desfavorables, y se transforma de nuevo en una forma vegetativa cuando las condiciones del medio vuelven a ser favorables. Esta espora, bien estudiada gracias a la microscopia electrónica, contiene la información genética de la bacteria la cual está protegida mediante dos cubiertas impermeables. Se caracteriza por su marcado estado de deshidratación y por la considerable reducción de actividades metabólicas, lo que contrasta con su riqueza enzimática. La facultad de esporular está sometida a control genético y ciertos gérmenes pueden perderla. La germinación de las esporas es siempre espontánea. Da lugar al nacimiento de una bacteria idéntica al germen que había esporulado.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flecha izquierda: Pág_inicial
 


Nutrición_y_crecimiento_bacterianos

 

 

Las bacterias necesitan de un aporte energético para desarollarse.

·       Se distinguen distintos tipos nutricionales según la fuente de energía utilizada: las bacterias que utilizan la luz son fotótrofas y las que utilizan los procesos de oxirreducción son quimiótrofas. Las bacterias pueden utilizar un sustrato mineral (litótrofas) u orgánico (organótrofas). Las bacterias patógenas que viven a expensas de la materia orgánica son quimioorganótrofas.

 

·       La energía en un sustrato orgánico es liberada en la oxidación del mismo mediante sucesivas deshidrogenaciones. El aceptor final del hidrógeno puede ser el oxígeno: se trata entonces de una respiración. Cuando el aceptor de hidrógeno es una sustancia orgánica (fermentación) o una sustancia inorgánica, estamos frente a una anaerobiosis.

 

 

·       Flecha izquierda: Pág_inicial

Además de los elementos indispensables para la síntesis de sus constituyentes y de una fuente de energía, ciertas bacterias precisan de unas sustancias específicas: los factores de crecimiento. Son éstos unos elementos indispensables para el crecimiento de un organismo incapaz de llevar a cabo su síntesis. Las bacterias que precisan de factores de crecimiento se llaman "autótrofas". Las que pueden sintetizar todos sus metabolitos se llaman "protótrofas". Ciertos factores son específicos, tal como la nicotinamida (vitamina B,) en Proteus. Existen unos niveles en la exigencia de las bacterias. Según André Lwoff, se pueden distinguir verdaderos factores de crecimiento, absolutamente indispensables, factores de partida, necesarios al principio del crecimiento y factores estimulantes. El crecimiento bacteriano es proporcional a la concentración de los factores de crecimiento. Así, las vitaminas, que constituyen factores de crecimiento para ciertas bacterias, pueden ser dosificadas por métodos microbiológicos (B12 y Lactobacillus lactis Doraren).

 

Se puede medir el crecimiento de las bacterias siguiendo la evolución a lo largo del tiempo del número de bacterias por unidad de volumen. Se utilizan métodos directos como pueden ser el contaje de gérmenes mediante el microscopio o el contaje de colonias presentes después de un cultivo de una dilución de una muestra dada en un intervalo de tiempo determinado. Igualmente se utilizan métodos indirectos (densidad óptica más que técnicas bioquímicas).

Existen seis fases en las curvas de crecimiento. Las más importantes son la fase de latencia (que depende del estado fisiológico de los gérmenes estudiados) y la fase exponencial, en la que la tasa de crecimiento es máxima. El crecimiento se para como consecuencia del agotamiento de uno o varios alimentos, de la acumulación de sustancias nocivas, o de la evolución hacia un pH desfavorable: se puede obtener una sincronización en la división de todas las células de la población, lo que permite estudiar ciertas propiedades fisiológicas de los gérmenes.

 

Filamentos de células de una cianobacteria de agua dulce del género Anabaena.

 

Flecha izquierda: Pág_inicial
 


Genética_bacteriana

 

 

Por la rapidez en su multiplicación, se eligen las bacterias como material para los estudios genéticos. En un pequeño volumen forman enormes poblaciones cuyo estudio evidencia la aparición de individuos que tienen propiedades nuevas. Se explica este fenómeno gracias a dos procesos comunes a todos los s o, traducidas por la aparición brusca eres vivos: las variaciones del genotipo de un carácter transmisible a la descendencia, y las variaciones fenotípicas, debidas al medio, no transmisibles y de las que no es apropiado hablar en genética. Las variaciones del genotipo pueden provenir de mutaciones, de transferencias genéticas y de modificaciones extracromosómicas.

 

 

 

ESCHERICHIA COLI

 

 

 

 

 

Flecha izquierda: Pág_inicial
 


Las_mutaciones

 

 

Todos los caracteres de las bacterias pueden ser objeto de mutaciones y ser modificados de varias maneras.

Las mutaciones son raras: la tasa de mutación oscila entre 10 y 100. Las mutaciones aparecen en una sola vez, de golpe. Las mutaciones son estables: un carácter adquirido no puede ser perdido salvo en caso de mutación reversible cuya frecuencia no es siempre idéntica a las de las mutaciones primitivas. Las mutaciones son espontáneas: no son inducidas, sino simplemente reveladas por el agente selectivo que evidencia los mutantes. Los mutantes, por último, son específicos: la mutación de un carácter no afecta a la de otro.

El estudio de las mutaciones tiene un interés fundamental. En efecto, tiene un interés especial de cara a la aplicación de dichos estudios a los problemas de resistencia bacteriana a los antibióticos. Análogamente tiene una gran importancia en los estudios de fisiología bacteriana.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flecha izquierda: Pág_inicial

 

 

Transferencias_genéticas

 

 

Estos procesos son realizados mediante la transmisión de caracteres hereditarios de una bacteria dadora a una receptora. Existen varios mecanismos de transferencia genética.

A lo largo de la transformación, la bacteria receptora adquiere una serie de caracteres genéticos en forma de fragmento de ADN. Esta adquisición es hereditaria. Este fenómeno fue descubierto en los pneumecocos en 1928.

En la conjugación, el intercambio de material genético necesita de un contacto entre la bacteria dadora y la bacteria receptora. La cualidad de dador está unida a un factor de fertilidad (F) que puede ser perdido. La transferencia cromosómica se realiza generalmente con baja frecuencia. No obstante, en las poblaciones F+, existen mutantes capaces de transferir los genes cromosómicos a muy alta frecuencia.

La duración del contacto entre bacteria dadora y bacteria receptora condiciona la importancia del fragmento cromosómico transmitido. El estudio de la conjugación ha permitido establecer los mapas cromosómicos de ciertas bacterias. Ciertamente, la conjugación juega un papel en la aparición en las bacterias de resistencia a los antibióticos.

La transducción es una transferencia genética obtenida mediante introducción en una bacteria receptora de genes bacterianos inyectados por un bacteriófago. Se trata de un virus que infecta ciertas bacterias sin destruirlas y cuyo ADN se integra en el cromosoma bacteriano. La partícula fágica transducida a menudo ha perdido una parte de su genoma que es sustituida por un fragmento de gene de la bacteria huésped, parte que es así inyectada a la bacteria receptora. Según el tipo de transducción, todo gen podrá ser transferido o, por el contrario, lo serán un grupo de genes determinados.

 

 

Una cadena única de DNA se mueve desde la célula dadora hacia la célula receptora, donde posteriormente se sintetiza su cadena complementaria (líneas punteadas en el cromosoma de la célula receptora). A medida que la cadena de DNA se transfiere, la cadena de la célula dadora "gira" en sentido contrario a las agujas del reloj, exponiendo los nucleótidos desapareados. Éstos sirven como molde para la síntesis de una cadena complementaria de DNA (líneas punteadas, célula dadora). Como resultado, el plásmido en la célula dadora continúa siendo un círculo de DNA de doble cadena y el plásmido transferido convierte a la célula receptora en una célula F+. Este mecanismo de replicación del DNA del plásmido se conoce como "replicación en círculo rodante"

 

Flecha izquierda: Pág_inicial
 


Variaciones_extracromosómicas

 

 

Además de por mutaciones y transferencias genéticas, la herencia bacteriana pude ser modificada por las variaciones que afectan ciertos elementos extracromosómicos que se dividen con la célula y son responsables de caracteres transmisibles: son los plasmidios y episomas entre los cuales el factor de transferencia de residencia múltiple juega un papel principal en la resistencia a los antibióticos.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flecha izquierda: Pág_inicial